
BSD Router Project
Don't buy a router: download it !
Olivier Cochard-Labbé FOSDEM’15
olivier@cochard.me

Agenda

● Why a x86 software router ?
● Project Targets
● NanoBSD: FreeBSD for appliance
● BSDRP feature list
● Benchmarking forwarding performance
● Virtual lab
● Roadmap

Why a x86 software router ?

● My thoughts in 2009
○ x86 servers should be able to deliver more PPS

Why a x86 software router ?

● My thoughts in 2009
○ x86 servers should be able to deliver more PPS

● 2011
○ netmap and Intel DPDK were introduced

x86 is ready for high-performance network appliance

Why a x86 software router ?

● My thoughts in 2009
○ x86 servers should be able to deliver more PPS

● 2011
○ netmap and Intel DPDK were introduced

x86 is ready for high-performance network appliance

● 2012
○ Software Defined Network (SDN)
○ Network Functions Virtualization (NfV)

Virtualization solutions are mainly x86 based

Why a x86 software router ?

● My thoughts in 2009
○ Software Configuration Management (SCM) for large

multi-vendors network didn’t exist… But NETCONF
is coming

○ x86 world had lot’s of tools: Chef, Puppet, CFEngine

Why a x86 software router ?

● My thoughts in 2009
○ Software Configuration Management (SCM) for large

multi-vendors network didn’t exist… But NETCONF
is coming

○ x86 world had lot’s of tools: Chef, Puppet, CFEngine
● 2015

○ NETCONF (23 RFC!!!) is still not production ready
○ More x86 tools: Ansible, Salt, etc…

x86 based appliance can use any existing SCM

Project targets

● Targets
○ Medium sized Giga/TenGiga Ethernet router
○ Not for home: Use m0n0wall of pfSense

● No WebGUI
○ Compliant with existing FreeBSD’s user base
○ Large deployment should managed by any common

SCM
● Audience: Network administrators

○ Manageable as an appliance (one firmware)

NanoBSD: FreeBSD for appliance

High MTBF

No rotating device

Flash storage

small OS + limiting write

Easy upgrade

Only one "Firmware"
image to push + reboot

Reducing maintenance

Dirty shutdown

read-only FS

NanoBSD: Image disk layout
MBR configurable boot-loader

Slice 4: User data [15MB on BSDRP] optional and
expandable if installed on disk bigger than
512MB

Slice 2: system (free for upgrade) [same size]

Slice 3: Configuration [15MB on BSDRP]

Slice 1: system [224MB on BSDRP, 100MB free]

NanoBSD: system upgrade

$ cat new-firmware.img | ssh nanobsd upgrade

NanoBSD: Generating disk image
Included in FreeBSD sources

cd /usr/src/tools/tools/nanobsd

Set a custom name (default is “full”)

echo 'NANO_NAME="mynano"' > mynano.conf

Use of glabel (media independent fstab)

echo 'NANO_LABEL="nanobsd"' >> mynano.conf

Target a 2GB flash media (default size)

echo "UsbDevice generic-hdd 2000" >> mynano.conf

Start nanobsd

sh nanobsd.sh -c mynano.conf

Wait about 2 hours and install image on flash disk

dd if=/usr/obj/nanobsd.mynanobsd/_.disk.full of=/dev/da0 bs=128k

Or use _.disk.image for upgrading existing system

BSDRP: NanoBSD on steroid

BSDRP: Routing features
● All routing protocols supported by Quagga and Bird

○ BGP, RIP and RIPng (IPv6), OSPF v2 and OSFP v3 (IPv6), ISIS
● Multicast

○ DVMRP (mrouted)
○ PIM Dense Mode (pimdd)
○ PIM Sparse Mode (pimd)

● Multiple FIB: 16 Routing Tables available by default
● High availability

○ CARP
○ uCARP
○ VRRP (freevrrpd)

http://www.nongnu.org/quagga/
http://bird.network.cz/
https://github.com/troglobit/mrouted
http://antc.uoregon.edu/PIMDM/pimd-dense.html
https://github.com/troglobit/pimd
http://www.pureftpd.org/project/ucarp
http://www.pureftpd.org/project/ucarp
https://github.com/gvnn3/FreeVRRPd

BSDRP: Traffic Shaping Features
● Traffic shaper with IPFW+dummynet

○ FIFO
○ WF2Q+ (Weighted Fair Queue)
○ RR (Deficit Round Robin)
○ QFQ (very fast variant of WF2Q+)

● Alternate queuing with ALTQ (not supported on all NIC)
○ CBQ (Class Based Queuing)
○ RED (Random Early Detection)
○ RIO (Random Early Drop)
○ HFSC (Hierarchical Packet Scheduler)
○ PRIQ (Priority Queuing)

● Committed Access Rate with netgraph
○ Single rate three color marker (RFC 2697)
○ Two rate three color marker (RFC 2698)
○ RED-like
○ Traffic shaping with RED

BSDRP: Other features
● VPN

○ IPSec (IKEv1 and IKEv2) with StrongSwan
○ SSL with OpenVPN
○ PPP with MPDv5: PPTP, PPPoE, L2TP, MLPPP, etc…

● Services
○ DHCP relay (dhcprelya) and Server (ISC)
○ NAT64 (Tayga)
○ netmap: ipfw (bride-mode only), packets generator/receiver

● Monitoring
○ Netflow (v5 and v9)
○ Process monitoring (monit)
○ SNMP (bsnmp)

● Tuned for routing

https://www.strongswan.org/
https://openvpn.net/
http://mpd.sourceforge.net/
https://github.com/sem-hub/dhcprelya
https://www.isc.org/downloads/dhcp/
http://www.litech.org/tayga/
http://mmonit.com/monit/
https://people.freebsd.org/~harti/bsnmp/

Benchmarking a router
● Router job: Forward packets between its interfaces at

maximum rate

Benchmarking a router
● Router job: Forward packets between its interfaces at

maximum rate
○ Reference value is the Packet Forwarding Rate in

packets-per-second (pps) unit
○ It’s NOT a bandwidth in bit-per-second (bps) unit !

Benchmarking a router
● Router job: Forward packets between its interfaces at

maximum rate
○ Reference value is the Packet Forwarding Rate in

packets-per-second (pps) unit
○ It’s NOT a bandwidth in bit-per-second (bps) unit !

● Some line-rate references
○ 1.48Mfps: Maximum Gigabit Ethernet
○ 14.8Mfps: Maximum TenGigabit Ethernet

● Full bench should follow RFC 2544 “Benchmarking
Methodology for Network Interconnect Devices”

http://www.ietf.org/rfc/rfc2544.txt

1. Measuring PPS forwarded with
○ smallest packet size: It’s the worse case
○ At maximum link rate

Benchmarking a router: Simplest lab

sending about 10Mpps (10Giga)

receiving DUT
netmap
pkt-gen

manager (scripted benchs)

measure point

Bandwidth estimation from PPS

2. Do some stats with ministat(1)
$ ministat -s -w 60 before-tuning after-tuning

x before-tuning

+ after-tuning

+--+

|x * x * + + x +|

| |________M______A_______________| |

| |________________M__A___________________| |

+--+

 N Min Max Median Avg Stddev

x 7 50 750 200 300 238.04761

+ 5 150 930 500 540 299.08193

No difference proven at 95.0% confidence

https://www.freebsd.org/cgi/man.cgi?query=ministat

Bandwidth estimation from PPS

3. Estimate bandwidth (bit-per-second) using
Internet Mix (IMIX) packet size distribution
○ IP layer

PPS*(7*40 + 4*576 + 1500)/12*8

○ Ethernet layer
PPS*(7*(40+14)+4*(576+14)+(1500+14))/12*8

http://en.wikipedia.org/wiki/Internet_Mix

Performance / hardware

IMIX estimation
(Ethernet bandwidth)

1.81 Mpps = 5 Gb/s
1.31 Mpps = 3.7 Gb/s
1.22 Mpps = 3.4 Gb/s

566 Kpps = 1.6 Gb/s
784 Kpps = 2.2 Gb/s
796 Kpps = 2.2 Gb/s

154 Kpps = 436 Mb/s
114 Kpps = 324 Mb/s
 88 Kpps = 250 Mb/s

Performance / BSD releases

IMIX estimation
(Ethernet bandwidth)

forwarding
1.74 Mpps = 4.9 Gb/s
1.81 Mpps = 5 Gb/s
 638 Kpps = 1.8 Gb/s

pf-stateful
851 Kpps = 2.4 Gb/s
1.24 Mpps = 3.51Gb/s
452 Kpps = 1.28 Gb/s

Performance / time

Start: 30th April 2014
End: 20th Nov. 2014

Should be lot’s more
once projects/routing
will be merged to
HEAD (“with some
locking modifications
is able to forward 8-
10MPPS on
something like
2xE2660”)

https://svnweb.freebsd.org/base/projects/routing/

Virtual Lab

Virtual Lab

● Shell scripts provided for multiple
hypervisors
○ Bhyve
○ VirtualBox (even a powershell script!)
○ Qemu/KVM

● Allow setup full-meshed lab in one command
line

https://raw.githubusercontent.com/ocochard/BSDRP/master/BSDRP/tools/BSDRP-lab-bhyve.sh
https://raw.githubusercontent.com/ocochard/BSDRP/master/BSDRP/tools/BSDRP-lab-bhyve.sh
https://github.com/ocochard/BSDRP/blob/master/BSDRP/tools/BSDRP-lab-vbox.sh
https://github.com/ocochard/BSDRP/blob/master/BSDRP/tools/BSDRP-lab-vbox.ps1
https://github.com/ocochard/BSDRP/blob/master/BSDRP/tools/BSDRP-lab-vbox.sh
https://raw.githubusercontent.com/ocochard/BSDRP/master/BSDRP/tools/BSDRP-lab-qemu.sh
https://raw.githubusercontent.com/ocochard/BSDRP/master/BSDRP/tools/BSDRP-lab-qemu.sh

Virtual Lab
$ BSDRP-lab-bhyve.sh -i BSDRP-1.54-full-amd64-serial.img -n 9

BSD Router Project (http://bsdrp.net) - bhyve full-meshed lab script

Setting-up a virtual environment with 9 VM(s):

(etc…)

VM 1 have the following NIC:

- vtnet0 connected to VM 2.

- vtnet1 connected to VM 3.

- vtnet2 connected to VM 4.

- vtnet3 connected to VM 5.

- vtnet4 connected to VM 6.

(etc…)

VM 2 have the following NIC:

- vtnet0 connected to VM 1.

(etc…)

bhyve is light: Live demo running smoothly

9 BSDRP VMs on a PC Engines APU (AMD

G-T40E, 1Ghz dual core, 4Go of RAM)

http://www.pcengines.ch/apu.htm

Virtual Lab

Roadmap
● Being SCM ready/compliant

○ We can’t add all SCM clients…but we need to
provide maximum compatibilities

○ Python (Ansible) or Ruby (Puppet, Chef) based
■ RUN DEPS packages size are huge! (need to upgrade from

512MB size image to 1GB)
○ CFengine client is very light

● Carefully following these projects
○ FreeBSD MPLS Implementation project
○ DXR+netmap prototype

http://en.wikipedia.org/wiki/Comparison_of_open-source_configuration_management_software
http://freebsd.mpls.in/
http://freebsd.mpls.in/
http://www.sigcomm.org/sites/default/files/ccr/papers/2012/October/2378956-2378961.pdf
http://www.sigcomm.org/sites/default/files/ccr/papers/2012/October/2378956-2378961.pdf

http://bsdrp.net

Questions ?

http://bsdrp.net

THANKS!

